
Algebraic Geometry Lecture 14 – Intersections in Projective Space
Part II

We need to recap/know the following ring theory.

Def n. A multiplicative system in a ring S is a subset A containing 1 and closed
under multiplication. The localisation A−1S is defined to be the ring formed by
equivalence classes of fractions s/a with s ∈ S, a ∈ A, where

s/a ∼ s′/a′ ⇔ there exists a′′ ∈ A such that a′′(a′s− as′) = 0.

If p is a prime ideal in S then A = S\p is a multiplicative system. The localisation
A−1S is then denoted Sp.

Example Consider the ring Z. For any prime number p, A = Z \ pZ is a multi-
plicative system, for if ab ∈ pZ then either a or b must be in pZ, so if a, b ∈ A then
ab ∈ A. The localisation is then

ZpZ = {a/b | a ∈ Z, b ∈ Z \ pZ}
/
∼

where a/b ∼ a′/b′ if and only if there is a c ∈ Z \ pZ such that

c(b′a− ba′) = 0.

But c 6= 0 so this just means b′a − ba′ = 0, or simply a/b = a′/b′, noting that
neither b nor b′ can be zero. So we have

ZpZ =
{a
b

: p - b
}

( = Q ∩ Zp).

The Hilbert Polynomial ctd.

Recall we’re trying to generalise Bézout’s theorem on how many times two curves
intersect counting multiplicities. By the end of this lecture we will be able to state
how many times a variety intersects a hypersurface, but we still need to define the
degree of a polynomial and how to count the multiplicity of an intersection. First
we need to introduce graded rings and modules.

p Recall: A module over a ring S, or S-module, is an abelian group M such that
we can multiply by elements of S, so for all s, s1, s2 ∈ S, m,m1,m2 ∈M :

• s1(s2m) = (s1s2)m
• (s1 + s2)m = s1m+ s2m
• s(m1 +m2) = sm1 + sm2.

We say the module is finitely generated if there is a finite set of elements in M , say
m1, . . . ,mr such that any element of M can be written as a linear combination of
these r elements over the ring S.
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Def n. A graded ring is a ring S together with a decomposition as a direct sum

S =
⊕
d>0

Sd

with Sd abelian groups, such that if a ∈ Sd and b ∈ Se then ab ∈ Sd+e.

Def n. (i) An element of Sd is called a homogeneous element of degree d.

(ii) An ideal A ⊆ S is a homogeneous ideal if

A =
⊕
d>0

(A ∩ Sd).

Def n. If S is a graded ring then a graded S-module is an S-module M with a
decomposition

M =
⊕
d∈Z

Md

such that if s ∈ Sd and m ∈Me then sm ∈Md+e.

Given an algebraic set Y we will be taking S to be k[x0, . . . , xn], and M to be
k[Y ] = S/I(Y ), the homogeneous coordinate ring of Y . We have

S =
⊕
d>0

Sd

where Sd are the homogeneous polynomials in S of degree d, and

M =
⊕
d∈Z

Sd/Id(Y ),

where Id(Y ) = I(Y ) ∩ Sd.

Now for a few more definitions.

Def n. For any graded S-module M and any integer ` the twisted module M(`) is
formed by shifting the decomposition of M ` places to the left. So if

M =
⊕
d∈Z

Md

then
M(`) =

⊕
d∈Z

Md+`.
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Def n. If M is a graded S-module then the annihilator of M is

AnnM = {s ∈ S | sM = 0}.
It is a homogeneous ideal in S.

Def n. Let M be a graded module over S = k[x0, . . . , xn]. The Hilbert function of
M is

ϕM (`) = dimk M`

for all ` ∈ Z.

Theorem (Hilbert–Serre). Let M be a finitely generated graded S-module where
S = k[x0, . . . , xn]. Then there exists a unique polynomial PM (z) ∈ Q[z] such that

ϕM (`) = PM (`)

for all sufficiently large integers `. Furthermore,

degPM (z) = dimV (AnnM).

Def n. The polynomial PM in the above theorem is the Hilbert polynomial of M .

Def n. If Y ⊂ Pn is an algebraic set of dimension r, we define the Hilbert polynomial
of Y to be the Hilbert polynomial of its homogeneous coordinate ring k[Y ], denoted
PY . By the Hilbert-Serre theorem it has degree r. Define the degree of Y to be r!
times the leading coefficient of PY .

Example Let Y ⊂ P2 be the variety

Y : z − x = 0.

Note that this is a projective line, so has dimension 1. Our graded ring is the ring
of polynomials which we’re denoting S = k[x, y, z]. It has decomposition

S =
⊕
d>0

k[x, y, z]d

where k[x, y, z]d are the homogeneous polynomials of degree d. Our graded module
over S is the homogeneous coordinate ring k[Y ] = S/I(Y ) which has decomposition

M =
⊕
d∈Z

k[x, y, z]d/(z − x)d =
⊕
d∈Z

k[x, y]d.

So the Hilbert function is given by

ϕM (`) = dimk M`

= dimk k[x, y]`
= `+ 1.
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So the Hilbert polynomial is just PM (z) = z + 1, and thus deg(Y ) = 1.

Def n. Let M be a module over the ring S. A filtration of M is an ascending chain
of submodules of

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M.

We define the length of the filtration to be n. The length of M is the maximum
length of any of its filtrations.

We are now in a position to start defining the multiplicity of an intersection. The
definition when we get to it would seem to be not well defined, but the following
proposition takes care of that.

Proposition 1. Let M be a finitely generated graded module over a noetherian
graded ring S (noetherian means all prime ideals are finitely generated). Then
there exists a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mr = M

by graded submodules such that for each i,

M i/M i−1 ∼= (S/pi)(`i)

for a homogeneous prime ideal pi of S and some integer `i. The filtration is not
necessarily unique, but to each such filtration we get a collection of (not necessarily
distinct) prime ideals {p1, . . . , pr}. And while the filtration is not unique, for any
such filtration the collection of prime ideals is the same.

With this in the bag we can now define:

Def n. If p is a minimal prime ideal of a graded S-module M then the multiplicity
of M at p, denoted µp(M), is defined to be the number of times that p appears in
any filtration as above.

And now at last we can define the following.

Def n. Let Y ⊆ Pn be a projective variety of dimension r. Let H be a hypersurface
not containing Y , i.e. Y * H. Then by the projective dimension theorem Y ∩Z =
Z1 ∪ . . .∩Zs, where each Zj is a variety of dimension r− 1. Let pj = I(Zj) be the
homogeneous prime ideal of Zj . We define the intersection multiplicity of Y and
H along Zj to be

i(Y,H;Zj) = µpj
(S/(I(Y ) + I(H))) .

Theorem. Let Y ⊆ Pn be a variety of dimension > 1, and let H be a hypersurface
not containing Y . Let Z1, . . . , Zs be the irreducible components of Y ∩H. Then

s∑
j=1

i(Y,H;Zj) · degZj = (deg Y )(degH).
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As you may have noticed working out the Hilbert polynomials is a big challenge
in most cases, though Groebner bases can help with it. But we can work out the
Hilbert polynomial of a point and so give a proof of Bézout’s theorem.

Corollary (Bézout’s theorem). Let Y,Z be distinct curves in P2 having degrees
d, e respectively. Let Y ∩ Z = {P1, . . . , Ps}. Then

s∑
j=1

i(Y, Z;Pj) = de.

Proof. By the projective dimension theorem the Pj ’s must be points and it’s an easy
exercise to show that the Hilbert polynomial of a point is just 1, and so degPj = 1
for each j, and so the result follows from the theorem. �


