Algebraic Geometry Lecture 14 - Intersections in Projective Space Part II

We need to recap/know the following ring theory.
Def ${ }^{\text {n }}$. A multiplicative system in a ring S is a subset A containing 1 and closed under multiplication. The localisation $A^{-1} S$ is defined to be the ring formed by equivalence classes of fractions s / a with $s \in S, a \in A$, where

$$
s / a \sim s^{\prime} / a^{\prime} \quad \Leftrightarrow \quad \text { there exists } a^{\prime \prime} \in A \text { such that } a^{\prime \prime}\left(a^{\prime} s-a s^{\prime}\right)=0
$$

If p is a prime ideal in S then $A=S \backslash p$ is a multiplicative system. The localisation $A^{-1} S$ is then denoted S_{p}.

Example Consider the ring \mathbb{Z}. For any prime number $p, A=\mathbb{Z} \backslash p \mathbb{Z}$ is a multiplicative system, for if $a b \in p \mathbb{Z}$ then either a or b must be in $p \mathbb{Z}$, so if $a, b \in A$ then $a b \in A$. The localisation is then

$$
\mathbb{Z}_{p \mathbb{Z}}=\{a / b \mid a \in \mathbb{Z}, b \in \mathbb{Z} \backslash p \mathbb{Z}\} / \sim
$$

where $a / b \sim a^{\prime} / b^{\prime}$ if and only if there is a $c \in \mathbb{Z} \backslash p \mathbb{Z}$ such that

$$
c\left(b^{\prime} a-b a^{\prime}\right)=0
$$

But $c \neq 0$ so this just means $b^{\prime} a-b a^{\prime}=0$, or simply $a / b=a^{\prime} / b^{\prime}$, noting that neither b nor b^{\prime} can be zero. So we have

$$
\begin{aligned}
\mathbb{Z}_{p \mathbb{Z}} & =\left\{\frac{a}{b}: p \nmid b\right\} \\
(& \left.=\mathbb{Q} \cap \mathbb{Z}_{p}\right)
\end{aligned}
$$

The Hilbert Polynomial ctd.

Recall we're trying to generalise Bézout's theorem on how many times two curves intersect counting multiplicities. By the end of this lecture we will be able to state how many times a variety intersects a hypersurface, but we still need to define the degree of a polynomial and how to count the multiplicity of an intersection. First we need to introduce graded rings and modules.
\ulcorner Recall: A module over a ring S, or S-module, is an abelian group M such that we can multiply by elements of S, so for all $s, s_{1}, s_{2} \in S, m, m_{1}, m_{2} \in M$:

- $s_{1}\left(s_{2} m\right)=\left(s_{1} s_{2}\right) m$
- $\left(s_{1}+s_{2}\right) m=s_{1} m+s_{2} m$
- $s\left(m_{1}+m_{2}\right)=s m_{1}+s m_{2}$.

We say the module is finitely generated if there is a finite set of elements in M, say m_{1}, \ldots, m_{r} such that any element of M can be written as a linear combination of these r elements over the ring S.

Def ${ }^{\mathbf{n}}$. A graded ring is a ring S together with a decomposition as a direct sum

$$
S=\bigoplus_{d \geqslant 0} S_{d}
$$

with S_{d} abelian groups, such that if $a \in S_{d}$ and $b \in S_{e}$ then $a b \in S_{d+e}$.

Def ${ }^{n}$. (i) An element of S_{d} is called a homogeneous element of degree d.
(ii) An ideal $\mathcal{A} \subseteq S$ is a homogeneous ideal if

$$
\mathcal{A}=\bigoplus_{d \geqslant 0}\left(\mathcal{A} \cap S_{d}\right)
$$

Def ${ }^{n}$. If S is a graded ring then a graded S-module is an S-module M with a decomposition

$$
M=\bigoplus_{d \in \mathbb{Z}} M_{d}
$$

such that if $s \in S_{d}$ and $m \in M_{e}$ then $s m \in M_{d+e}$.

Given an algebraic set Y we will be taking S to be $k\left[x_{0}, \ldots, x_{n}\right]$, and M to be $k[Y]=S / I(Y)$, the homogeneous coordinate ring of Y. We have

$$
S=\bigoplus_{d \geqslant 0} S_{d}
$$

where S_{d} are the homogeneous polynomials in S of degree d, and

$$
M=\bigoplus_{d \in \mathbb{Z}} S_{d} / I_{d}(Y)
$$

where $I_{d}(Y)=I(Y) \cap S_{d}$.

Now for a few more definitions.

Def $^{\mathbf{n}}$. For any graded S-module M and any integer ℓ the twisted module $M(\ell)$ is formed by shifting the decomposition of $M \ell$ places to the left. So if

$$
M=\bigoplus_{d \in \mathbb{Z}} M_{d}
$$

then

$$
M(\ell)=\bigoplus_{d \in \mathbb{Z}} M_{d+\ell}
$$

Def ${ }^{\mathbf{n}}$. If M is a graded S-module then the annihilator of M is

$$
\text { Ann } M=\{s \in S \mid s M=0\}
$$

It is a homogeneous ideal in S.

Def $^{\mathbf{n}}$. Let M be a graded module over $S=k\left[x_{0}, \ldots, x_{n}\right]$. The Hilbert function of M is

$$
\varphi_{M}(\ell)=\operatorname{dim}_{k} M_{\ell}
$$

for all $\ell \in \mathbb{Z}$.

Theorem (Hilbert-Serre). Let M be a finitely generated graded S-module where $S=k\left[x_{0}, \ldots, x_{n}\right]$. Then there exists a unique polynomial $P_{M}(z) \in \mathbb{Q}[z]$ such that

$$
\varphi_{M}(\ell)=P_{M}(\ell)
$$

for all sufficiently large integers ℓ. Furthermore,

$$
\operatorname{deg} P_{M}(z)=\operatorname{dim} V(\operatorname{Ann} M)
$$

Def ${ }^{\mathbf{n}}$. The polynomial P_{M} in the above theorem is the Hilbert polynomial of M.

Def ${ }^{\mathrm{n}}$. If $Y \subset \mathbb{P}^{n}$ is an algebraic set of dimension r, we define the Hilbert polynomial of Y to be the Hilbert polynomial of its homogeneous coordinate ring $k[Y]$, denoted P_{Y}. By the Hilbert-Serre theorem it has degree r. Define the degree of Y to be r ! times the leading coefficient of P_{Y}.

Example Let $Y \subset \mathbb{P}^{2}$ be the variety

$$
Y: z-x=0
$$

Note that this is a projective line, so has dimension 1. Our graded ring is the ring of polynomials which we're denoting $S=k[x, y, z]$. It has decomposition

$$
S=\bigoplus_{d \geqslant 0} k[x, y, z]_{d}
$$

where $k[x, y, z]_{d}$ are the homogeneous polynomials of degree d. Our graded module over S is the homogeneous coordinate ring $k[Y]=S / I(Y)$ which has decomposition

$$
M=\bigoplus_{d \in \mathbb{Z}} k[x, y, z]_{d} /(z-x)_{d}=\bigoplus_{d \in \mathbb{Z}} k[x, y]_{d}
$$

So the Hilbert function is given by

$$
\begin{aligned}
\varphi_{M}(\ell) & =\operatorname{dim}_{k} M_{\ell} \\
& =\operatorname{dim}_{k} k[x, y]_{\ell} \\
& =\ell+1
\end{aligned}
$$

So the Hilbert polynomial is just $P_{M}(z)=z+1$, and thus $\operatorname{deg}(Y)=1$.

Def ${ }^{n}$. Let M be a module over the ring S. A filtration of M is an ascending chain of submodules of

$$
0=M^{0} \subset M^{1} \subset \ldots \subset M^{n}=M
$$

We define the length of the filtration to be n. The length of M is the maximum length of any of its filtrations.

We are now in a position to start defining the multiplicity of an intersection. The definition when we get to it would seem to be not well defined, but the following proposition takes care of that.

Proposition 1. Let M be a finitely generated graded module over a noetherian graded ring S (noetherian means all prime ideals are finitely generated). Then there exists a filtration

$$
0=M^{0} \subset M^{1} \subset \ldots \subset M^{r}=M
$$

by graded submodules such that for each i,

$$
M^{i} / M^{i-1} \cong\left(S / p_{i}\right)\left(\ell_{i}\right)
$$

for a homogeneous prime ideal p_{i} of S and some integer ℓ_{i}. The filtration is not necessarily unique, but to each such filtration we get a collection of (not necessarily distinct) prime ideals $\left\{p_{1}, \ldots, p_{r}\right\}$. And while the filtration is not unique, for any such filtration the collection of prime ideals is the same.

With this in the bag we can now define:
Def ${ }^{\mathbf{n}}$. If p is a minimal prime ideal of a graded S-module M then the multiplicity of M at p, denoted $\mu_{p}(M)$, is defined to be the number of times that p appears in any filtration as above.

And now at last we can define the following.
Def ${ }^{\mathrm{n}}$. Let $Y \subseteq \mathbb{P}^{n}$ be a projective variety of dimension r. Let H be a hypersurface not containing Y, i.e. $Y \nsubseteq H$. Then by the projective dimension theorem $Y \cap Z=$ $Z_{1} \cup \ldots \cap Z_{s}$, where each Z_{j} is a variety of dimension $r-1$. Let $p_{j}=I\left(Z_{j}\right)$ be the homogeneous prime ideal of Z_{j}. We define the intersection multiplicity of Y and H along Z_{j} to be

$$
i\left(Y, H ; Z_{j}\right)=\mu_{p_{j}}(S /(I(Y)+I(H)))
$$

Theorem. Let $Y \subseteq \mathbb{P}^{n}$ be a variety of dimension $\geqslant 1$, and let H be a hypersurface not containing Y. Let Z_{1}, \ldots, Z_{s} be the irreducible components of $Y \cap H$. Then

$$
\sum_{j=1}^{s} i\left(Y, H ; Z_{j}\right) \cdot \operatorname{deg} Z_{j}=(\operatorname{deg} Y)(\operatorname{deg} H)
$$

As you may have noticed working out the Hilbert polynomials is a big challenge in most cases, though Groebner bases can help with it. But we can work out the Hilbert polynomial of a point and so give a proof of Bézout's theorem.

Corollary (Bézout's theorem). Let Y, Z be distinct curves in \mathbb{P}^{2} having degrees d, e respectively. Let $Y \cap Z=\left\{P_{1}, \ldots, P_{s}\right\}$. Then

$$
\sum_{j=1}^{s} i\left(Y, Z ; P_{j}\right)=d e
$$

Proof. By the projective dimension theorem the P_{j} 's must be points and it's an easy exercise to show that the Hilbert polynomial of a point is just 1 , and so $\operatorname{deg} P_{j}=1$ for each j, and so the result follows from the theorem.

